Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6830-6836, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38418383

RESUMO

Mechanical forces are crucial for biological processes such as T cell antigen recognition. A suite of molecular tension probes to measure pulling forces have been reported over the past decade; however, there are no reports of molecular probes for measuring compressive forces, representing a gap in the current mechanobiology toolbox. To address this gap, we report a molecular compression reporter using pseudostable hairpins (M-CRUSH). The design principle was based on a pseudostable DNA structure that folds in response to an external compressive force. We created a library of DNA stem-loop hairpins with varying thermodynamic stability, and then used Förster Resonance Energy Transfer (FRET) to quantify hairpin folding stability as a function of temperature and crowding. We identified an optimal pseudostable DNA hairpin highly sensitive to molecular crowding that displayed a shift in melting temperature (Tm) of 7 °C in response to a PEG crowding agent. When immobilized on surfaces, this optimized DNA hairpin showed a 29 ± 6% increase in FRET index in response to 25% w/w PEG 8K. As a proof-of-concept demonstration, we employed M-CRUSH to map the compressive forces generated by primary naïve T cells. We noted dynamic compressive forces that were highly sensitive to antigen presentation and coreceptor engagement. Importantly, mechanical forces are generated by cytoskeletal protrusions caused by acto-myosin activity. This was confirmed by treating cells with cytoskeletal inhibitors, which resulted in a lower FRET response when compared to untreated cells. Furthermore, we showed that M-CRUSH signal is dependent on probe density with greater density probes showing enhanced signal. Finally, we demonstrated that M-CRUSH probes are modular and can be applied to different cell types by displaying a compressive signal observed under human platelets. M-CRUSH offers a powerful tool to complement tension sensors and map out compressive forces in living systems.


Assuntos
DNA , Fenômenos Mecânicos , Humanos , DNA/química , Linfócitos T , Termodinâmica , Sondas Moleculares
2.
ACS Nano ; 18(8): 6186-6201, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38346399

RESUMO

Endocytosis is a major bottleneck toward cytosolic delivery of nucleic acids, as the vast majority of nucleic acid drugs remain trapped within endosomes. Current trends to overcome endosomal entrapment and subsequent degradation provide varied success; however, active delivery agents such as cell-penetrating peptides have emerged as a prominent strategy to improve cytosolic delivery. Yet, these membrane-active agents have poor selectivity for endosomal membranes, leading to toxicity. A hallmark of endosomes is their acidic environment, which aids in degradation of foreign materials. Here, we develop a pH-triggered spherical nucleic acid that provides smart antisense oligonucleotide (ASO) release upon endosomal acidification and selective membrane disruption, termed DNA EndosomaL Escape Vehicle Response (DELVR). We anchor i-Motif DNA to a nanoparticle (AuNP), where the complement strand contains both an ASO sequence and a functionalized endosomal escape peptide (EEP). By orienting the EEP toward the AuNP core, the EEP is inactive until it is released through acidification-induced i-Motif folding. In this study, we characterize a small library of i-Motif duplexes to develop a structure-switching nucleic acid sequence triggered by endosomal acidification. We evaluate antisense efficacy using HIF1a, a hypoxic indicator upregulated in many cancers, and demonstrate dose-dependent activity through RT-qPCR. We show that DELVR significantly improves ASO efficacy in vitro. Finally, we use fluorescence lifetime imaging and activity measurement to show that DELVR benefits synergistically from nuclease- and pH-driven release strategies with increased ASO endosomal escape efficiency. Overall, this study develops a modular platform that improves the cytosolic delivery of nucleic acid therapeutics and offers key insights for overcoming intracellular barriers.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Endossomos/química , Endocitose/fisiologia , Membranas Intracelulares , DNA/metabolismo
3.
Angew Chem Int Ed Engl ; 63(13): e202316851, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38214887

RESUMO

DNA motors that consume chemical energy to generate processive mechanical motion mimic natural motor proteins and have garnered interest due to their potential applications in dynamic nanotechnology, biosensing, and drug delivery. Such motors translocate by a catalytic cycle of binding, cleavage, and rebinding between DNA "legs" on the motor body and RNA "footholds" on a track. Herein, we address the well-documented trade-off between motor speed and processivity and investigate how these parameters are controlled by the affinity between DNA legs and their complementary footholds. Specifically, we explore the role of DNA leg length and GC content in tuning motor performance by dictating the rate of leg-foothold dissociation. Our investigations reveal that motors with 0 % GC content exhibit increased instantaneous velocities of up to 150 nm/sec, three-fold greater than previously reported DNA motors and comparable to the speeds of biological motor proteins. We also demonstrate that the faster speed and weaker forces generated by 0 % GC motors can be leveraged for enhanced capabilities in sensing. We observe single-molecule sensitivity when programming the motors to stall in response to the binding of nucleic acid targets. These findings offer insights for the design of high-performance DNA motors with promising real-world biosensing applications.


Assuntos
Ácidos Nucleicos , Proteínas Motores Moleculares/metabolismo , DNA/química , Nanotecnologia , Miosinas
4.
Nat Chem ; 16(2): 229-238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884668

RESUMO

Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe's binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.


Assuntos
Ácidos Nucleicos , Hibridização de Ácido Nucleico/métodos , DNA/genética , Sondas de Oligonucleotídeos , Mutação
5.
ACS Chem Biol ; 18(11): 2349-2367, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37910400

RESUMO

Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Oligonucleotídeos/química , DNA/metabolismo , Lipídeos , Peptídeos
6.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503090

RESUMO

The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signaling. The past decade has witnessed the development of molecular probes which have revealed many aspects of receptor mechanotransduction. However, most force probes are immobilized on hard substrates, thus failing to reveal mechanics in the physiological context of cell membranes. In this report, we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We demonstrate that TCR-antigen bonds experience 5-10 pN forces, and the mechanical events are dependent on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. We tethered DOTS onto a microparticle to mechanically screen antigen in high throughput using flow cytometry. Finally, DOTS were anchored onto live B cell membranes thus producing the first quantification of TCR mechanics at authentic immune cell-cell junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...